
7 Dfi8 COMPUTER-RIDFD DESIGN 
OF ROBUST DECENTRALIZED 

I/i
CONTROLLERS(U) SCIENTIFIC SYSTEMS INC CAMBRIDGE MA
H C RAZAVI ET AL RUG 85 AFWRL-TR-85-3046

UNCLASSIFIED F33615-84-C-36i9 F/G 1/3 NLE7EEEEEEEEllE
mEEEEEEEEEEEEE
Ell~lllEE~lEEE
Eu...IIIII



1111156 1j..

IIII1' I IlllI

MICROCOPY RESOLUTION TEST CHART
NATIONAt BURW-OF STANDARDS-1963-A

.4,



AD-A160 118

AFWAL-TR-85-3046

COMPUTER-AIDED DESIGN OFROBUST DECENTRALIZED CONTROLLERS

HAMID C. RAZAVI
RAMAN K. MEHRA
SCIENTIFIC SYSTEMS, INC.
54 CAMBRIDGE PARK DR.
CAMBRIDGE, MA 02140

AND

M. VIDYASAGAR
XC UNIVERSITY OF WATERLOO

WATERLOO, ONTARIO N2L 361

AUGUST 1985 tELECTh 0

FINAL REPORT FOR PERIOD
SEPTEMBER 1984 - MAY 1985 A

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433 " 5 1 0 1 0 0 3 7

45q

* * .- . .. . . . . . . . . ..-. ..l



When Government drawings, ,.po-cif icatloos, or othiv, dta are used
for any purpose other than in connection with a definitely related
Government procurement operation, the United States Government thereby
Incurs no responsibility nor any obligation whatsoever; and the fact
that the government may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other data, is not to be
regarded by Implication or otherwise as In any manner licensing the -
holder or any other person or corporation, or conveying any rights or
permission to manufacture use, or sell any patented Invention that may
in any way be related thereto.

This report has been reviewed by the Office of Public Affairs
(ASD/PA) and is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for
publication.

SIVA S. BANDA DAVID K. BOWSER, Actg Chief
Project Engineer Control Dynamics Branch
Control Dynamics Branch Flight Control Division

FOR TIIF COMMANDER

FRAN A. .-ARPIN
Chief, F'ght.ntrol Division
Flight Dynamics Laboratory

"If your address has changed, if you wish to be removed from our maillng
list, or If the addressee Is no longer employed by your organization

please notify AFWAL/FICC, Wright-Patterson AFB, OH 45433-6553 to help us
maintain a current mailing list".

Copies of this report should not be returned unless return is required
by security conziderattons, contrActua] obligations, or notice on a
specific document.

'

.4

'Ap



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified N/A
2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release; distribution

2b. OECLASSIFICATION/DOWNGRAOING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFWAL-TR-85-3046

6a NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION
(Ifapplicable) Air Force Wright Aeronautical Laboratories

Scientific Systems Inc N/A Flight Dynamics Lab (AFWAL/FIGC)

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

54 Rindge Ave Extension

Cambridge MA 02140 WPAFB, OH 45433

. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

Flight Dynamics Lab JAFWAL/FIGC F33615-84-C-03619

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

WPAFB, OH 45433 ELEMENT NO. NO. NO. NO.

1. TITLE (Include Security Clasfication) Computer-Aided 65502F 3005 30 15
Design of Robust Decentralized Controllers

12. PERSONAL AUTHOR(S)

Hamid Razavi, Raman Mehra and M. Vidyasagar
13&. TYPE OF REPORT 13b. TIME COVERED 14 AEO EOT(rM. a) 15. PAGE COUNT

Final Report FROM Sep 84 TO 20Ma8 August 1985 56
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reuerse if ncceuary and identify by block number)

FIELD I GROUP SUB. GR. Decentralized control, robust control, robust

2301 1707 decentralized filtering, stable factorization, computer-
aided desien

19. ABSTRACT (Continue on reverse if necesary and identify by block number)

Significant progress was made on all of the tasks proposed for the Phase I (feasibility)
effort. In addition to the 4 tasks that was originally proposed, a new subtask on
simultaneously stabilizing controllers was included, and a model of a flexible structure
was used for which two types of fault tolerant controllers were designed. The concept of
fixed modes was extended to that of a decentralizefixed determinant and significant new
results for characterizing fixed determinants were obtained. A characterization of all
decentralized controllers was obtained based on which conditions for the existence of
robust.decentralized controllers were derived, in case of a two channel system. Finally,
an iterative solution (of nonlinear programming type) was proposed for optimal
decentralized filtering of a two-channel system. In this way a firm foundation in Phase I

k was laid based on which a state-of-the-art approach to computer-aid d design of robust

decentralized control problems can be carried out. _1'/A".j Ole ..

20. OISTRIBUTION/AVAILABILITY OF ABSTRA 21. AISTRACT §ECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITEO 0 SAME AS RPT, DTIC USERS C Unclassified

22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL
(Include Area Code)

SIVA S. BANDA (513)255-8677 AFWAL/FIGC

DO FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

!¢.. * . . -. ..- . ......... ........... . ....... .



FOREWORD

This report describes the work performed by Scientific, Systems, Inc.

from September 1984 to May 1985 under Air Force Award No. F33615-84-C3619.

The work represents the first of a three-phase project aimed at the deve-

lopment of state-of-the-art analytical and computational tools for

computer-aided robust decentralized control. The objective of the Phase I

effort was to demonstrate the feasibility of the approach. Dr. Siva Banda

was the project manager for the Air Force, Wright Aeronautical

Laboratories, Flight Dynamics Laboratory.

Dr. Raman Mehra was the Project Supervisor. Dr. Hamid Razavi was the

principal investigator. Professor M. Vidasagar of the University of

Waterloo was the consultant. Special thanks goes to Ms. Alina Bernat for

her excellent supervision of the documentation.
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1 . INTRODUCTION

This document comprises the final report on the Air Force Contract no.

F33615-84-C-3619 "Computer-Aided Design of Robust Decentralized Controllers,"

based on the Stable Factorization approach. For the Phase I (feasibility)

effort we proposed "to make a start on the design of robust decentralized

controllers by tackling the following problems:"

1) numerical computation of optimally robust controllers

2) decentralized stabilization of an n-channel system

3) robust decentralized control of a two-channel system

4) optimal decentralized filtering for a two-channel system

In addition to the Phase I proposed tasks, in this report we include a

new subtask (1.(b)) on simultaneous stabilization. Also a model of a

flexible structure is presented for which two types of "robust" controllers

are computed.

We are happy to report that substantial progress was obtained in all

of the four original tasks as well as the added substask 1.(a). Our preli-

minary computational experience with the design of the above-mentioned

controllers has been very good.

As a result of successful completion of Phase I effort, a Firm foun-

dation has been laid for the Phase I undertaking.

3-1-
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2. TASK 1

NUMERICAL COMPUTATION OF OPTIMALLY ROBUST CONTROLLERS

The overall goal of this task was to devise numerical techniques for

obtaining optimally robust controllers. The specific objective of this

task was to obtain controllers which are robust against the class of plant

perturbations introduced in Vidyasagar and Kimura (1984) known as the

"stable factor perturbations". Recall that this class , denoted as S (No

Do , r ), consists of all plants P of the form P (s) = N (s) [ D (s) ]-

for which II [ N' - N'0 D' - D'0 1 1 < Ir(jw) I for all w, where r is a

proper and stable rational function and prime denotes transposition. Thus

the class of stable factor perturbations consists of all plants whose

stable factors are 'close' to the stable factors of the nominal plant P0 .

The function r(jw) plays the role of an "uncertainty profile", as a func-

tion of frequency.

The advantage of stable factor perturbations over for example

multiplicative or additive perturbations is that the former does not

have the often restrictive requirement on the perturbed and unperturbed

plants that they have the same number of poles in the unstable region.

Furthermore, stable factor perturbation results do not require that the

perturbed plant poles or zeros on the Jw-axis be fixed in their location.

In order to illustrate the significance of these more relaxed conditions, a

model of a flexible structure will be discussed, and its relevance to

stable factor uncertainty will be described.

-a
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In addition to the tasks spelled out in the proposed Phase I effort,

we will present a second type of robustness result. (Furthermore the

robustness results will be applied to stabilize a flexible structure.)

This second type of robustness relates to the concept of simultaneous sta-

bilization introduced in Vidyasagar and Viswanadham (1982). Recall that

the simultaneous stabilization problem is as follows: Given the nominal

plant Po and a number of contingent plant conditions PI ,Pr

determine a single controller, when one exists, such that it stabilizes not

only the nominal plant but also the other contingent plants PI , . Pr

(For details see Razavi, Mehra, and Vidyasagar (1984) and the above paper).

Before we present the techniques for solving the above two types of

robustness problems we describe a simple model we shall use to obtain spe-

cific controller designs. Consider a 4-disk vibrating system indicated in

Figure 1.

Sensor

T Actuator

Figure 1. 4-disk system.

L-p-
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The disks are connected by torsion springs. Let Ki denote the spring

constant for the spring between i-th and (i+l)-th disk; let Ji denote the

inertia for i-th disk. The equations of motion for the system are:

- - K _ K1  0 0
01 -j-1 71 01 0

_ K1  + (Kl + K2 ) K2
02 *T2 -2 U-2 0 02 0

+ = (S)

03 0 K2 + (K2 + K3 ) K3  03

J3  J3  3_ 3U

LI!] L 0 0 K3  K3 j Lo4

where 01 denotes the angle of deflection of the i-th disk from normal

position. Each dot indicates differentiation with respect to time.

The right hand side indicates the scaled torques applied (in this case to

the 3-rd disk).

The motivation for this model is that by applying actuator inputs

(torques) ui at disk i one wishes to control the outputs Oj, for i equal to

or different from J. The transfer function from each input ui to each out-

put Oj can be easily calculated from the dynamic system (S). For the pur-

pose of illustration we assume that the spring constants Ki are all equal

" to unity. The nominal plant is further assumed to have Ji = 1 , i=l, 2, 3,

*- . 4 (e.g. equal inertia). Note that due to the fact that there is no

Au



damping in the system, the transfer function from any input to any output

will have all of its poles and zeros located on the jw-axis.

For example the transfer function from u3 to 04 will be of the form

I. v.:."b (s)
b(s)=

a (s)

-"" $2 + 02

+

4
S2  T_  (S2 +

Where 81 and ci are real positive scalars, corresponding to a zero at

zI  jB1 and poles Pi = jai, i = 1, 2, 3, 4. The rigid body modes

correspond to the poles s 2 - 0.

The preceding model will be used in the application of two robust

controller design techniques based on the robustness notions that we

discussed earlier: (a) robust controllers for 'discrete' or contingent

plant perturbations (e.g. fixed controllers that simultaneously stabilize a

nominal plant P1 together with contingent plants P2 , , Pr.). Here

we consider the one input - two output case; furthermore let r=2, i.e. one

contingency, (b) optimally robust controllers for stable factor pertur-

bations. Sections 1.(a) and 1.(b) describe the computational techniques

. together with numerical results.

7 -5-
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Subtask 1.(a) Simultaneous Stabilization of Two Vibrating Systems

In this section, we present an example of the simultaneous stabiliza-

tion technique introduced in Vidyasagar and Viswanadham (1982). The

technique is applied to a four-disk vibrating system described earlier.

The computation of the actual controller using state- space versions of the

stable factorization approach is carried out using the methods from the

, -2,forthcoming thesis of Minto (1985).

A control input is applied to the second disk from the top, and the two

outputs are the angular positions of the first and fourth disks respec-

tively. Two different situations are considered. In the first, all four

disks are identical. In the second, the first three disks are identical

and the last disk has a moment of inertia which is one quarter of those of

the rest. In the nominal case the system is denoted by P1 (s) and equals

the following: (The particular pole zero locations correspond to the

experimental set-up described in Cannon and Rosenthal (1984))

Case I (All disks identical)

P,(s) al (S) b1 2 (s)

b 2 (S)(1.1)

where

al(s) = s(s±j 23.81) (s±j 18.22)(s±j 9.863) (1.2a)

bll(s) = (s±j 20.85) (s±j 7.96) (1.2b)

b1 2 (s) = (s±J 12.886)

-6-
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Where the symbol (s±uj) denotes (s+aj)(s-aJ)

Case 2 (First 3 disks are identical and moment of inertia of the last

disk is one quarter of each of the rest)

P2(s )  2--- ) b21(s)
Sb22(s) (1.3)

where

a2 (s) = s(s±j 29.34) (s±J 21.48) (s±j 11.938) (1.4a)

b2 1 (s) = b22(s) (1.4b)

b2 2 (s) = (s±j 25.95) (1.4c)

Note that we have assumed a unity gain since non-unity gains can be easily

absorbed into the controller. The objective is to find a single controller

C that stabilizes both PI and P2. In the present instance both systems are

entirely undamped, i.e. all poles and zeros are purely imaginary. If we

stabilize the two systems '-y moving the poles into the left half-plane, it

is possible to come up with designs that yield closed-loop systems which

are nominally stable, but have poles with very low damping. To rule out

this possibility, we define the stability region to be the region {s:Re s

<-I}. Thus, in order for a system to be stable in this more restrictive

sense, its poles must have real parts less than -1.

Mathematically, the easiest way to handle this requirement is to trans-

form variables by replacing s by s-1. This gives two modified systems

-7-



Ql(S) and Q2(s) whose poles and zeros all lie along the shifted vertical

axis Re s=1. If we now simultanteously stabilize Ql and Q2 by a controller

Cmod(S), then the controller C(s)-Cmod(s+1) moves the poles of P1 and P2

into the region Re s<-l.

Accordingly, define

Qi (s)= I Q2 (s)= 1

a(s-1) 1 a2(s-1) I (1.5)a( -l 2(s-- _b22(s-1)._

where all functions are as in (1.2) and (1.4). Because the systems have

only one input, it is easy to construct right-coprime factorizations for

QI and Q2 . Define, for example

f1(s)=(s+l)(s+2)(s+3)(s+4)(s+5)(s+6)(s+7), (1.6a)

f2(s)=(s+1.5)(s+2.5)(s+3.5)(s+4.5)(s+5.5)(s+6.5)(s+7.5) (1.6b)

d1 s)2(S] 112 (s-1) P22 (s) k22 (s-)

Then( Lnil] di )is an r.c.p. of Qi for i=1,2. It is easy to construct
1n2

state-space realizations for the matrices in (1.7). Expand the various

polynomials as follows:

-8-



kfi(s )  -
7  + E fik s

k=O (l.8a)

6 k
aj(s) - s7 + E aik8

k-o (1.8b)

6 k

bij(s) - Z ijks  (1.8c)
k-o

Now let Ai be the companion matrix

*io - il h • i5 i6

1 0 . . . 0 0
Ai = R7x 7 ,  (1.9a)

0 1 0 0

0 0 . .. 1 0

and define

Bi = [ 0 0 . . . 01 cR7x l , (1.9b)

Faio ao .. . a16 -a16

C" = bil. bi16 cR3x7, (1.9c)

Lbi 2O . . . b126

Then the quadruple (Ai,Bi,Ci,Ei) is a state-space realization of the

"stacked" 3xl system [di nil ni2l. Here E has been used in place of the

-9
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usual output feedthrough symbol D to avoid confusion with 'denominator'

term in coprime factors.

Next, consider the 3x2 system

Vdl d2 1
nll n21 =:T (1.10)

212 n221

A state-space realization of T(s) can now be readily constructed, as

follows:

At = [Rl
4xl4 , Bt = [R

14J 2 (1.11a)
roIA B

Ct = [cI c2 ] eR
3Xl4 , Et [El  E2] R3X2  (1.11b)

Now we summarize the procedure of Vidyasagar (1985), Vidyasagar et al.

(1985) for simultaneously stabilizing the two plants Qi and Q2 • Select

units ul and u2 in S, and try to find a matrix R(s)CSIx3 such that

R(s) T(s) = [ul(s) u2(s)]. (1.12)

If such an R can be found, then R can be partitioned as [dc ncl nc2I,

and then

1_ [ncl (s) n c2(S)]

C(s) =1 dc(s) (1.13)

- 10 -



is a controller that solves the simultaneous stabilization problem. The

argument in Vidyasagar(1985), Vidyasagar et al. (1985) is that, since

T has more rows than columns, generically it has a stable left inverse, say

Z. Then we can choose the units uI and u2 arbitrarily, and set R-[u 1 u2 ]Z.

However, in the present instance, T does not have a stable left
4

inverse, since the matrix T( -)=Et only has rank 1. In this case, we

'A proceed as follows (Note that the procedure is from Minto (1985)):

Let tl(s), t2(s) denote the two columns of T(s), and partition Bt,Etas

Bt = [bI  b2 ], Et = [el e2 1. (1.14)

(Hereafter we drop the subscript "t" on all matrices.) Then it is easy to

see that the quadruple (A,bi,c,ei) is a state-space realization of ti.

Also, el =e2 . Now, we want to solve

R [tI  t2 ] = [uI  u2]. (1.15)

This is equivalent to

R [t1  t2-t11 = [u 1  u2-ul]. (1.16)

Now (A,b2-bj,c,e 2-e1 ) is a state-space realization of t2 -tl. Since

e2-el= 0 , t2(s)-tl(s) is strictly proper. Hence, (1.16) implies that u2

-ul is also strictly proper. In other words, the two units u1 and u2 can

not be chosen independently, but must satisfy u2(-)-ul(-). Now (1.16) is

equivalent to

- 11 -



R [t1  (s + Y) (t2 -tl )] [u1  (s + y) (u2 - uI )], (1.17)

where y is any positive number. Since (A,b2 - bl, c,O)is a state-space

realization of t2-tI, one can show without much difficulty that a state-

space realization of (s+Y)(t 2 (s)-t 1 (s)) is given by (A,(A+yI)(b2-bj),c,

c(b2-bl)). If the vector c(b2-bj) is linearly independent of el, then the

matrix [t1  (s+41 )(t2-tl)] has a left inverse, and (1.17) can be solved for

-- R. Otherwise the procedure has to be repeated. The algorithm can be

stated as follows:

4-.

Step 1: Set i=0

Step 2: Is e2 linearly independent of el ? If so, go to step 5;

if not, go to step 3

Step 3: Since e2 is linearly dependent on el, there exists a constant

vi such that e2 = vi el . Replace b2 by b2 - vi bj , e2 by e2

- vi e1 = 0.

Step 4: Replace b2 by (A+yI) b2 , e2 by c b2 . Increment i and go to

step 2.

Step5: Stop

At this stage, one gets an equation of the following form

R (s) [It (s) i2 (s) I = [u2 (s) u2 (s) 1, (1.18)

- 12 -



where, letting k denote the total number of iterations, we have

k
U2 (s) = u2 (s) - E v i (s + y )i uj (s) (1.19)

i =0

Also, the termination criterion ensures that the matrix [tj (a) t2 (s)]

has a stable left inverse. Hence, once suitable units ul and u2 are

chosen, the matrix R (s) can be found as

R (s) = [u1 (s) u2 (s) ( T1 Cs), (1.20)

where T1 (s) is a stable left inverse of It1 (s) t2 (s) I.

To complete the discussion, it only remains to show how to choose the units

uI and u2 . Now any function f in s can be expanded in a power series of

the form

f (S) = E fi (s+y ) -i . (1.21)

i =0

Now, the power series of the units ui and u2 must satisfy certain

relationships to ensure that various quantities are strictly proper. For

instance, if we simply choose ul (s) =1, then the first k terms in the

power series of u2 (s) must be v0 + v2 (s + y) -1 +...+ Vk_] (s + y)-(k+l),

where the constants vi are generated in step 3 of the algorithm. Thus any

unit u2 can be chosen, so that the above condition is satisfied.

- 13-



In the problem at hand, we chose y - 8 , and it turned out that the

algorithm had to be run five times, and the constants were

v0 = 1, v1  - 3.5, v2 = 461.58, v 3 - 6769.9, v4 - -75847 (1.22)

If we perform the bilinear transformation z = (s-8) / (s+8), which maps s=-

into z=l, we conclude that the power series (in terms of z) for u2 must

look like

u2 = 3.0798 + 3.7164 z - 0.18256 z2 - 2.9765 z3 - 1.1573 z4 +... (1.23)

Fortunately, it turns out that if we add just one term, namely 1Oz5 , then

u2 is a unit, i.e. its zeros are in the open left half of the s-plane.

The procedure leads to a nineteenth order controller, whose state-space

realization is given in Appendix B. The twenty-six closed-loop poles with

plants PI and P 2 are given below:

*" With Plant P1 and controller

-1

-1.517

~-1.5

-1.333

-1.25

-1.20

-1.167

- 14-



-1.143

-1.118

-1.126

-1. 155+10. 1236

-1 .006+0.077

-1.oo2 jO.o048

-1.002+jO.0044

-1.012+.JO.004

-1.012+jO.006

-1.013_j0.006

-1.013+_jO.003

"* With Plant P2 and controller

-2.481

-1.667

-1.517

-1.4

-1.286

-1.222

-1.043

-1.095

-1.018

-1.017

.3 -1.015

-1.013

15-
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-1.016±0.124

C; -1.006+J0.077

-1 .002+jO.048

V-* -1.o02+J0.044
-1.003±0.039

-1. 137-JO.037

-1. 105±)0.025

It can be noted that all closed-loop poles have damping ratios very

close to 1.

In summary, in an actual controller design problem one would apply

order reduction techniques to replace the nineteenth order controller by

something smaller. One would also scale the A,B,C,E matrices of the

controller in such a way that the numbers do not have a very large dynamic

range.

Subtask 1(b): Numerical Computation of Optimally Robust Controller

Recall that in this task the class of perturbations that we are

interested in are those of 'stable factor'; this class was denoted by S(No,

Do, r). The following necessary and sufficient result was derived by

Vidyasagar and Kimura (1984). A Controller C that stabilizes the nominal

plant P0 - NoD 0  also stabilizes all plants in the class S(N0 , Do,r) if

and only if I[X Yjr(1G, where C - -Y-IX and X and Y are the solutions to the

Bezout identity. Stated more generally, given the class S(No, Do, r) of

stable factor perturbations, there exists a controller which robustly sta-

- 16-
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bilizes all plants in S(No, Do, r) if and only if I[Y X]' + f-N D]'RI<1

for some stable rational matrix R, where (R, ) denote the right coprime

factorization of P. Given an uncertainty profile reS, consider Ar for all

real values of the parameter A. An optimally robust controller is that

which stabilizes the plants in the set S(NO, Do, Ar) with the largest value

of A.

-With this review, our aim in this subtask is to compute the following

minimization problem:

Min IF-GRHN (1.24)

Re H-~

nxl
where GE R. , He R0okxm with n>l, k<m

(other cases are simpler and follow from this problem.) To see that the

above minimization solves the robust controller problem described above

simply make the associations:

F [Y X]' (1.25)

G =: [-N D]' (1.26)

H= I (1.27)

The robust controller is obtained from the optimal R, via Youla's
parameterization.

We will call the above minimization problem the "tall" plant minimiza-

tion problem as the free variable R appears on the right of G, and G is

"tall". The proposed procedure for solving (1.24) turned out to be dif-

ficult to implement - as the proposed minimax problem became intractable.
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Instead we present the following approach. (Throughout we assume that G

and H have full column or row rank as appropriate; otherwise the procedure

can be slightly modified.) The procedure will be summarized without proof

as an algorithm. The main idea is that by a series of manipulations we

will transform the tall plant problem (1.24) to a square plant problem

(1.28) which then can be readily solved.

Step 1:

Compute G = Gi Go, (Go square)

H = H0' Hi', (H0 square)

where the subscripts i and 0 stand for inner and outer, respectively

Let Q= Go RH0

Step 2: Compute complementary inner for Gi

i) Perform row permutations if necessary to get

Gi= [N with I DI +0

ii) Let P(Z) = -[D'(Z- 1 )]- N(Z-1 )

Compute r.c.f. of P

P(Z) = U(z) V(Z)

U Rmx(n-m) (n-m)x(n-m)

- 1-
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Let W VI . Rnx(n-m)

Compute inner outer factorization of W:

W=i Wj W0

(n-m)x(n-m) , nx(n-m)

Wi is the complementary inner for Gi:

= [Gi:Wi]

Where R. n is inner

Step 3:

Compute AF C 1

(Partition w*F such that Q and A are additively compatible. Note that

Step 4:

Let p = max d CDI ," D

* Step 5:

Choose Y •

Let K= [C D]

Step 6:

Compute L = (y2 I - K* K) - 1/2

-19-
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4°.,

(Notation: If A = VTV, then V=:A 1/2)

Compute M = (I-BLL*B*)-I/2

If IB LIO. ) I increase y and go to Step 6, otherwise go

to Step 7

Step 7:

Compute J* = Min IMAL- SfO.

S E M(Hw.)

i) Let A2 = MAL; A2 E M(Loo)

ii) Compute l.c.f. of A2 ,

A2 = (T(z)) -1 U(z)

iii) Compute inner outer factorization of T:

T = Ti TO; where To is a unit

Then

A 2 = (Ti(z))-' V(z)

Where

V(z) = To1 U

Step 8:

Let b = ITi]

Then IMAL -SR. T d  V b SO.

adj

where x indicates adjoint of x.

- 20 -
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Thus the minimization problem (1.24) becomes

J*= Min RT~dJv - b SR.o (1.28)

S c M(Hw)

The right hand side of (1.28) is a 'square' plant minimization

problem which can be solved using methods of Section 7.4 of

Vidyasagar (1985)

Step 9:

If J*<I decrease y and go to Step 6

If J*>l increase y and go to Step 6

If J*=l go to Step 10

Step 10:

Set Q = M- S L- 1

then, R*= G0
-  Q H-W0

is the optimum R in (1.24).

We conclude this section with a controller design which achieves

stable factor robustness against pole/zero movements on the jw-axis of the

four disk vibrating (non-minimum phase) system. The controller order turns

out to be smaller (than that of the previous controller) but some of the

closed loop poles are not as well damped.
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In the interest of brevity, only the final results are summarized

here. Nominal plant transfer function from 3rd to 4th disk:

s 2 + 195P0 (s) =k k ________

POs) =k s2( s2+ 156) ( s2+361)(s2+576)

One such robustly stabilizing controller c(s) for P0 (s) is:

(s-132.44)(s+27.14)(s+90.26)(s+3.6)(s+0.99)(s 2-17.5 s + 398.5)
c(s) =

(s+190.35)(s+37.70)(s+0.489±30.935J)(s+11.61±20.89j )(s+8.86±5.307j)

The value of the gain k is 827,000 (Cannon and Rosenthal (1984)). The

closed loop nominal system poles are

10Ox

-1.9036 + 0.00001
-0.0063 + 0.30961
-0.0063 - 0.30961
-0.0036 + 0.24271
-0.1183 + 0.21201
-0.0036 - 0.24271
-0.1183 - 0.21201
-0.0040 + 0.17721
-0.0040 - 0.17721
-0.0017 + 0.12351

-0.1001 + 0.06031
-0.0017 - 0.12351
-0.1001 - 0.06031
-0.0370 + 0.0000i
-0.0181 + 0.00001
-0.0073 + 0.0000i

The variations in inertia cause the zero and the poles to vary from their

nominal values. Figure 2 indicates the range for the zero and one pole

variation. The nominal value for the zero is 13.96 and for the pole is

12.48. The acceptable range for pole zero variations is shown by the

darkened lines. Other pole variations of about the same percentage

variation range turn out to be stabilized by the fixed controller.
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Figure 2. Pole-zero variation range

,-23



3. TASK 2

DECENTRALIZED STABILIZATION OF AN n-CHANNEL SYSTEM

Recall that task 2 consisted of finding a parameterization of all

decentralized controllers that stabilize a given plant.

Suppose a plant P has dimensions Xxm, so that it has m inputs and t

outputs. Partition the inputs and outputs into k disjoint subsets each,

where k is the number of channels. Without loss of generality, renumber

the inputs and outputs in such a way that the first channel consists of the

first ml inputs and t1 outputs, the second channel of the next m2 inputs and

12 outputs, and so on. Then we have integers ml ,..., mk , and 11 ...

k k
Xk such that E mi = m and E 1fi = . This partitioning of inputs and

1=l i=1
outputs is called an information structure. With these definitions, a

controller C is said to be decentralized if it is block-diagonal of the

form

0

C= C2  ,(2.1)

0 Ck

where ci has dimensions mixti. The objectives of this task are (i) to

derive conditions under which a given plant can be stabilized by a

decentralized controller, and to find an expression for .11 controllers

that stabilize it.

-24-
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We now summarize some results from Vidyasagar (1985) concerning

stabilization. Given a plant p and a controller c, we form the composite

transfer matrix

H (P, C)- LI+PC)-l -P(I+Cp)-]2

(I CF-I j  ,(2.2)

S(I+PC)- 1  (I+CP]

and say that C stabilizes P if the above transfer matrix is stable. Let

S denote the set of scalar stable transfer functions. Thus in the con-

tineuos-time case S consists of proper rational functions of the Laplacian

variable s whose poles all lie in the open left half-plane. In the

discrete-time case, S consists of proper rational functions of the unit

advance operator z whose poles all lie inside the closed unit disk.

Finally, let M (S) denote the set of matrices, of whatever order, whose

elements all lie in S. Then, given any P, one can factor it in the form

--1 _
Np Dp1 = Dp Np, where Np, Dp Np, Dp all belong to M (S), and moreover

satisfy the so-called Bezout identities

XP Np + Y p Dp - I, Np Xp + Dp Yp -I, (2.3)

where Xp, Yp, Xip, Yp, also belong to M(S). We refer to the pair (Np, Dp)

as a right-coprime factorization (r.c.f.) of P, and to the pair ip,"Np)

as a left-coprime factorization (l.c.f.) of P. Similar remarks and symbols

apply to C.

A function f in S is called a unit if its reciprocal 1/f also belongs

to S. A square matrix U in H (S) is called unimodular if its inverse U-1

also belongs to M (s). It is easy to show that U is unimodular if and only

if its determinant (denoted by IUI) is a unit.

'.25
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The following theorem is well-known, and forms the basis of this

section; see (Vidyasagar 1985).

Theorem 2.1. Given P, C, let (Np,Dp), (NcD) be r.c.f.'s of P and C

respectively, and let (Dp,Np), (Dc,Nc ) be l.c.f.'s of P and C respectively.

Then the following sattements are equivalent:

(i) C stabilizes P.

(ii) The matrix A = Dc Dp + Nc Np is unimodular.

(iii) The matrix A = D-p Dc + Np Nc is unimodular.

Now we are in a position to present some new results. A key concept

in decentralized stabilization is that of fixed modes (Davison and Wang

(1973), Vidyasagar and Viswanadham (1983). In the present report, we

extend this concept by defining a decentralized fixed determinant. Given

a plant p and a controller c, it can be shown that the quantities JAI and

ITI (where A, A are defined in theorem 2.1) differ only by a unit, and that

each is a characteristic determinant of the closed-loop transfer matrix

H(p,c); see (Vidyasagar 1985.). The significance of this is that

the unstable poles of H(p,c) are precisely the RHP zeros of its

characteristis determinant. Now the (drcentralized) fixed determinant is

defined as follows: Let 0 = O(p,c) denote the quantity IAI, and let R

denote the set of constant decentralized feedback gain matrices. Then f,

the fixed determinant, is given by

f = g.c.d. * (p,K)
(2.3)

K c R

In other words, f is the greatest common divisor of all characteristric

determinants of all closed-loop systems obtained by applying a block-

a -26-
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diagonal constant output feedback to the given plant P. Obviously the RHP

zeros of P are precisely the RHP poles of P that remain fixed under all

such feedback gains. The next two theorems give some new and powerful

results characterizing f. (All proofs are given in Appendix A.)

Theorem 2.2. Let (N,D) be an r.c.f. of P, (D, N) an l.c.f. of P. Then

each of the following constructions gives an explicit formula for f: (i)

partition N and D by rows, as follows: DI consists of the first ml rows,

of D, D2 of the next m2 rows, and so on until Dk consists of the last mk

rows. ThusF DD21

D= : g (2.4)

L;kJ
where Di has mi rows. Similarly partition N as

F N IN
N :1 (2.5)

whee N L ;k j

where Ni has Ii rows. Now define

Di~ Fl'
Fi =,F= F2  ] (2.6)

N
i

and note that F has dimensions (m+X) xm. Then f is the g.c.d. of all mxm

minors of F consisting of exactly mi rows from Fi, for each i.

L (it) partition D, N as

-27-
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D = [-D N = ... (2.7)

where D1 has £i columns, Ni has mi columns. Define

Fi = [Di Ni], F = [F, F2 ...Fk], (2.8)

and note that F has dimensions £x[X+m]. Then f is the g.c.d. of all Ixt

minors of F consisting of exactly £i columns from Fi.

Theorem 2.2 gives a very simple and direct characterization of fixed

modes, or more generally fixed determinents. Theorem 2.3 below shows that

an RHP pole of P that can not be moved by constant (decentralized) output

feedback also remains fixed under dynamic (decentralized) output compen-

sation. Strictly speaking this result is not new; however, the proof given

here is very transparent.

Theorem 2.3. Let DC denote the set of all decentralized controllers

and define
g = g.c.d. *(P,C) (2.9)

C c DC
Then g = f.

Next, we present a decomposition principle that is useful in finding

all decentralized stabilizing controllers. This result should be compared

with (Zames 1981), (Callier and Desoer 1982) and (Vidyasagar 1985).

Theorem 2.4.Given a plant P, let DS (P) denote the set of all

decentralized stabilizing controllers that stabilize P. Let C be a

specific decentralized stabilizing controller for P, and define PI=P

-28-



(I+CP)-l. Then C+DS (P1 ) is a subset of DS (P), and the two sets are

equal if and only if C is stable.

The theorem should be interpreted as follows: Given a plant P, suppose

one finds first a particular C that stabilizes P. Then, whenever C1

stabilizes the resulting plant P1 - P(I+CP) - I , the controller C+Cj
4

stabilizes the original plant P. If C is stable, then every stabilizing

controller for P can be expressed as the sum of C and a stabilizing

controller for P 1 . If C is unstable, then there exist stabilizing

controllers for P that can not be decomposed in this fashion. The point

of the theorem is that the set DS (PI) is in general easier to determine

than the set DS (P), since the first plant is stable. Thus, by using

Theorem 2.4, one can reduce the problem of finding all decentralized

stabilizing controllers for a general plant to one of finding all

decentralized stabilizing controllers for a stable plant, under certain

conditions. Specifically, if the given plant can be stabilized by a stable

decentralized controller, such a reduction is always possible.

Youla et al. (1974) call a plant strongly stabilizable if it can be

stabilized by a stable controller. Theorem 2.4 brings out the importance

of the concept of decentralized strong stabilizability, which is the abi-

lity to be stabilized by a decentralized stable controller. While

necessary and sufficient conditions are available for strong stabilizabi-

lity, so far only necessary conditions are available for decentralized

strong stabilizability.

At this point, it becomes necessary to choose between stating all

results in their most general form or in their clearest form, we opt
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to state all subsequent results in their clearest form by restricting

to the case where the plant P is square of dimension mxm, and there are

m channels. Thus a decentralized controller in this context is a diagonal

controller. It must be emphasized that all of the results below carry to a

general plant with a general information structure, but at the expense of

more cumbersome notation.

Let (ND) be an r.c.p. of the plant P. Then both N and D are square

and have dimension mxm, and the matrices Di, Ni in (2.4) -(2.5) are just

the rows of D and of N. Hence we choose to denote them by lower case

letters di, ni. The matrix F in (2.6) is 2mxm and consits of an

interlearning of the rows of D and N. The minors of F whose g.c.d, equals

the fixed determinant f are those of the form

V2

(2.10)

where vi equals either di or ni . Clearly there are 2m of these. An easy way

to index these minors is to use binary notation. Let a c {0,1}m, i. e. a

is a binary number with m bits. Let vi= di if ai = 0 and ni if ai = 1.

Then, as a varies over {0,1} m , the corresponding minor va defined in (2.10)

traces out all the minors whose g.c.d. equals the fixed determinant f.

Theorem 2.5. Let 0 denote the binary zero with m bits, In order for

P to be stabilizable by a stable diagonal controller, a necessary condition

is the following. Define

- 30



a = v0 = IDI, b = g.c.d. va (2.11)

Then a and b must satisfy the parity interlacing property; that is, between

every pair of real RHP zeros of b, there must be an even number of zeros of

a, or equivalently, a must have the same sign at all real RHP zeros of b.

The condition of Theorem 2.5 should be compared to the condition for

strong stabilizability by a (not necessarily decentralized) controller, as

given in Youla et al (1974), Vidyasagar and Viswanadham (1982): Let n

denote the g.c.d. of all elements of N; then a and n satisfy the parity

interlacing property. The latter condition is necessary and sufficient,

while the former (in Theorem 2.5) is only necessary.

Next, we turn to the problem of finding all decentralized stabilizing

controllers. If the plant is strongly decentrally stabilizable, then the

results below can be simplified using Theorem 2.4. The following lemma

is very useful for this purpose.

Lemma 2.6. Let gij Mi<, 0¢j~m be given elements of S, and suppose

that for some integer J l the matrix

F'[gio glil

(2.12)

go gtj

has rank 2. Define

a a g.c.d. {giji (2.13)
1 € i Z , 0 4 j 4 m

under these conditions, for almost all functions aj, l1jm belong to S,

31
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we have

m
g.c.d. {gio + E gjj aji =a (2.14)

j=I

Now we can tackle the problem of finding all decentralized stabilized

controllers using the results of Corfmat and Morse (1976), together with

Lemma 2.6. We first give a detailed treatment of a two-input, two-outputs

- systems to bring out the basic ideas clearly, and then move on to the

general case of an m-input, m-output system.

consider a system

P1l P12n

(2.15)
_P21 P22

which we wish to stabilize by a diagonal controller

c= (2.16)
0 ci

Let (D,R) be an l.c.f. of P, and partition the matrix [1 R] as

[1 l] = [d1  d2  n1  n2 l (2.17)

Since C is diagonal, it ras an r.c.p. of the form

- -



•, Dc

%: 0= 0 a2  (.8

1 just let (0j,aj) be a coprime factorization of ci, for i=1,2. In order for

C to stabilize P, by theorem 2.1 a necessary and sufficient condition is

that the quantity

u= IDDc + NNcI (2.19)

be a unit of S. However, from (2.17) and (2.18),
.4

INC I dl + 01 n1  a2 d2 + 82 n 2 (2.20)

Now for convenience we introduce the "wedge product" notation.

Given two 2xl vectors vl and v2 , the scalar vI A v2 equals the determinant

of the 2x2 matrix [vI v2]. It is easy to see that wedge product is a

multilinear function. Now

u= (al dl + a, nl) A (a2 d 2 + 82 n2 )

= al a2 (dlAd2 ) + al 82 (d1An2) + 81 a2 (nlAd2) + P1 P2 (nlAn2)
(2.21)

clearly, unless

g.c.d. {dlAd 2, dlAn 2 , nlAd 2 , nlAn 2 } =1, (2.22)

u can never be a unit. It can be routinely verified that the above g.c.d.

is precisely the fixed determinant defined in Theorem 2.2.
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Suppose (2.22) is true. Then the problem of choosing a decentralized

stabilizing controller becomes one of selecting al, a2 , f , 82, such that

u is a unit. For this purpose, note that

u= a 1 [a2 (dlAd2 ) + 52 (dAn2 )] + al [a2 (nlAd2 )

+ 02 (nAn2 )] (2.23)

Hence, if

g.c.d.{ a2 (d1 Ad2 ) + 82 (dlAn2 ), a2 (nlAn2 ) + R2 (nlAn2 )} =1, (2.24)

then it is possible to choose al, al such that u is a unit; the converse

is also true. Thus the question becomes: When is (2.24) true ? This is

where Lemma 2.6 is useful. It states that if (2.22) holds, then (2.24)

also holds for almost all a 2 , 82, provided

Vd1 Ad2  d 1An2  =
I I =:g*O

LnlAd 2  nlAn 2 I

However, routine calculations show that

g =1 DI P12 P21 (2.26)

Hence the rank condition holds provided P12 * 0 and P21 0. This is the

strong connectedness condition of comfort and Morse (1976).

Thus the strategy for finding all decentralized stabilizing controllers is

as follows: Pick 02, B2 at random. Then for almost all choices of a2 , 2

the condition (2.24) will hold. Next, select x,y such that

x 1 2 (dlAd2 ) + 62 (dlAn2 )] + Y [a2 (njAd2 ) + 82 (nlAn2 )] = 1

(2.27)

4.4
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Then the set of all a,, 81 such that u=1 (and this is the only case that

needs to be considered) is given by

al = x+r [a2 (nlAd 2 ) + 82 (nlAn 2 )],

81 = y-r [a2 (d1Ad2) + 82 (d1Anl)], (2.28)

as r varies over the set S. The formula (2.28) can be made cleaner by

noting that P=-_1 R, and using the relationships between minors of p and

minors of [ D R ] (see Vidyasagar 1985, appendix B)). This gives

ai = x + r IrI [a2 P11 + 82 P12 ], (2.29)

al = y - r IDI[[ 2 + 82 P22].

The above stated discussion becomes a little simpler if the plant P is

already stable. As shown by Theorem 2.4, it is possible under certain cir-

cumstances to restrict one's own attention to this case. To proceed

further, we need the following result:

Theorem 2.7 (Youla et all 1976, Zames 1981) given a stable plant P,

the set of all controllers that stabilize P is given by

s(P) _ {(IRp)-1 R: RcM(s)} (2.30)

Using this theorem, we can characterize all decentralized stabilizing

controllers.

Theorem 2.8 Suppose P is a given 2x2 stable plant. Then the set of

-" all diagonal C that stabilize P is given by

DS (P) = {(I-RP)-IR: RcM(s) and r12 + P121 RI = 0, r21 + P21 1 RI = 0}
(2.31)

*'" Thus any stable R substituted into the expression (I-RP)_ 1 R yields a
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controller that stabilizes P. However, in order for the resulting

controller to be diagonal, R must satisfy the two additional conditions

r12 + P1 2 IRI = 0, r21 + P2 1 RI f 0. These conditions can be used as

follows: pick any function f e S, and set r12  -P12 f, r2 1

-P21 f, and select r1l, r12 arbitrarily except for the constraint r1l

-.r 2 2  f (O-P12 P21 f)"

-36
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4. TASK 3

ROBUST DECENTRALIZED CONTROL OF A TWO-CHANNEL SYSTEM

An important practical problem is the following: Given a nominal

plant description P0 , together with a "band of uncertainty" containing P0 ,

when does there exist a controller that stabilizes not only P0 but also all

plants within the band of uncertainty? This problem can be divided into

two parts: (i) To determine necessary and sufficient conditions for robust

stabilization and (ii) to determine whether there is a controller that

satisfies these conditions. The first part was solved by Doyle and Stein

(1981), Chen and Desoer (1982) and Vidyasagar and Kimura (1984), while the

second part was solved by Vidyasagar and Kimura (1984). These results form

the point of departure for Task 3, and are summarized below.

To make the theorem statements more compact, we introduce three

cla~ses of uncertainty. In each class, r is a given function belonging to

the set S of stable transfer functions. Let P0 be a given plant descrip-

tion, not necessarily stable, but free of jw-axis poles. Then the class

A(P0,r) of additive perturbations consists of all plants P that have the

same number of open RHP poles as P0 , and satisfy

1I P (jw) - Po(Jw)H(4 Ir (jw) I for all w. (3.1)

The class M(P 0 ,r) of multiplicative perturbations consists of all P of the

form (I+M)PO, such that P has the same number of open RHP poles as P0 , and

in addition,
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4 IIM(jw) II < Ir (Jw) I for all w. (3.2)

Finally, set (No Do ) be a particular r.c.f. of P0. Then as discussed in

Task 1, the class S(P0 ,r ) of stable factor perturbations consists of all

plants P of the form N(s) [D(s)] -1 where

N (jw) - No Ow)

() J < I r(jw) for all w. (3.3).11D (jw) - D (Jw)l

In the case of stable factor perturbations, there are no restrictions on

the relative numbers of RHP poles of P and of P0

Theorem 3.1 (Doyle and Stein 1981, Chen and Desoer 1982)

A controller C that stabilizes P0 also stabilizes all plants in the class

A (Po, r ) if and only if

It[c (I + P0 C) -1 (jw) II. Ir (Jw) I 4 1 for all w. (3.4)

C stabilizes all plants in the class M (PO, r) if and only if

I[PO C (I + P0 C ) - ] (Jw) II. Ir (w) I 1 1 for all w. (3.5)

Theorem 3.2 (Vidyasagar and Kimura 1984). Suppose C stabilizes P0 ,

and choose an X.c.p. (A,B) of C such that

A (s) Do (s) + B (s) No (s) = I, for all S. (3.6)

Then C stabilizes all plants in the class S (pO, r) if and only if

I1(1 A B] r) (jw) II ' 1 for all w. (3.7)

Theorem 3.3 (Vidyasagar and Kimura 1984). Let (NO,DO), (D0 , No)

be a particular r.c.f. and a particular £.c.f. of Po, and choose

X,Y,X,Y in M(S) such that

X No + Y Do - I, N0 X + DO Y = I . (3.8)
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Then there exists a controller C that stabilizes all plants in the class

A (P0 ,r) if and only if there exists an ReM (S) such that

II[(X D + DR) r] (jw) I < 1 for all w. (3.9)

There exists a controller C that stabilizes all plants in the class

M(Po,r) if and only if there exists an ReM (S) such that

II[(N X + NRD) r I (jw) 1 for all w. (3.10)

There exists a controller C that stabilizes all plants in the class

S(P0 ,r) if and only if there exists an ReM (S) such that

H~r (I Y X] + R [-No  Do ]) (jw) II ( 1 for all w. (3.11)

Now we come to Task 3. The objective of this task is to determine

conditions for the existence of robust decentralized controllers, in the

special case of a two-channel system. We restrict attention to the case

where P0 is stable. In this case the problem is one of determining whether

or not there exists a decentralized controller C that satisfies (3.4),

(3.5) or (3.6), as appropriate. It turns out that this can be translated

into a restriction on R using Theorem 2.8.

Theorem 3.4 Suppose P0 is 2x2 and decentrally strongly stabilizable.

Let C1 be a diagonal controller that stabilizies P0 , and let PI = P0

(I + C1 P0 ) 1. Let qcS be given. Then there exists a decentralized

controller that stabilizes all plants in the class A (P0,q) if and only

if there exists a matrix R S2x2 such that

r12 = -(P) 1 2 IRI, r 21 = - (PO 21 IRI, (3.12)SIqCl (I-P 1 C1 ) + q (I- PI C1 ) Jj- ( 1. (3.13)
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There exists a decentralized controller that stabilizes all plants in the

.5' class M(P0 ,q) if and only if there exists a matrix ReS 2x2 satisfying (3.12)

such that

I Iq PI C1 + q P1 R(I -P 1 C1 , I '1 (3.14)

Finally, let (No,D 0 ) be an r.c.f. of P0 and let U be the unique unimodular

matrix in S2x2 such that

FNo ]U= o (3.15)

LDO I C1 PI

Then there exists a decentralized controller that stabilizes all plants in

the class S(P0 ,r) if and only if there exists a matrix R S2x2 satisfying

(3.12) such that

jJ ( U [ I C1 ] + R I - F1  I- P1 C1 J) q lb. ( 1. (3.16)
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5. TASK 4

OPTIMAL DECENTRALIZED FILTERING FOR A TWO-CHANNEL SYSTEM

In this task, we propose an iterative solution procedure based on

Theorem 2.8. Suppose P is 2x2, W is a given 2x2 weighting matrix, and we
.4

want to minimize the cost function

J = W (I + PC) -1 110, (4.1)

where the norm 11.110 is defined by

11F1 0  ffi ess. sup IIF (jw)II, (4.2)

w

and we want to find the optimal decentralized C. If P is decentrally

strongly stabilizable, then Theorem 2.4 allows us to assume without loss of

generality that P is stable. In this case, the set of all (I+PC)- 1 that

result from a stabilizinbg controller is given by I-PR, as R varies over

M(S). However, only certain choices of R lead to decentralized control-

lers, as shown in Theorem 2.8. Thus the problem is one of minimizing

IIW(I-PR) II., subject to the constraint that

r12 = - P12 RI, r2 1 f - P21 IRI. (4.3)

Let us denote R by y; then (4.3) implies that

r12= - P2 , r2 1 = P21y , r1l r22  y (1-P12 P21Y )" (4.4)

The cost function to be minimized isIIW(I-PR) II., where

I-PR [I (1 r11 + P12 r21  (p11 r12 + P12 r2 2 )

-(P21 r~l + P22 r21 ) 1- (P21 r12 + P22 r2 2

- 41 -



F- Y P12 P21 - Pl rlI  - Pll Y P12 r2 2  -.

L P21 rll - P22 P21 Y 1- Y P12 P21 - P22 r2 2 ]

The norm of this quantity, which is an affine function of the vector

[y rlI r2 2 ], is to be minimized subject to the constraint

r11 r2 2 - y (1- P12 P21 Y ) -. (4.6)

This can be done using nonlinear programming.
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CONCLUSIONS

With various degrees of detail and complexity we have obtained signifi-

cant results on all of the proposed tasks, plus an additional subtask

together with two robust controller designs for a flexible structure model.

More specifically, two numerical procedures were given for construction of

two different types of robust controllers. In addition, the concept of

fixed modes was extended to that of fixed determinant, which is important

-for decentralized control. Furthermore, it was demonstrated that for a

stable system, then exists a class of robust decentralized controllers for

a 2x2 system. Finally, an iterative approach was proposed to solve optimal

decentralized filtering for a two channel system. It appears evident that

in this Phase I preliminary effort we have demonstrated the feasibility of

the approach.
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APPENDIX A
(Proofs)

In this appendix we give the proofs of all results that are original to

this proposal.

Proof of Theorem 2.2 First, let K be a block-diagonal matrix. Then,

(I,K) is an I.c.f. of K, so that ,(P,K)-II D+K N-IID+KNI. Now

ID+KNI- IDI {I+KPI (A.1)

Expanding the determinant !I+KPI using the well-known formula for the

determinant of the sum of a diagonal matrix and an arbitrary matrix (see

e.g. Vidyasagar 1985) gives

S( P, K) = ID. + E principal minors of KP (A.2)

Now the minors of KP can be expanded by the Binet-Cauchy formula (Vidyasa-

gar 1985)- This gives

(KP) I,i = E KI,J PJI (A.3)

* (P,K) = IDI + E KI,J Pj, 1 IDI (A.4)

However, (Vidyasagar 1985) the quantity Pj,I IDIcan be expressed

as a minor of F, and several minors KI,j are structurally equal to zero

because of the block-diagonal nature of K. Thus the only minors that

appear in (A.4) are the minors of F referred to in the statement of Theorem

2.2. If , denotes the g.c.d. of these minors, then each term in (A.4) is

a multiple of C, whatever be K. Hence ; divides *(P,K) for all K, and

finally divides f, which is the g.c.d. of all *(P,K).

5'45
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To complete the proof, we show that f divides C. First, let K-0.

Then, from (A.4), *(P,K)fIDI. Hence, from (2.3), f divides IV1. Next, let

K be a matrix with a single nonzero element, which equals one. Then the

summation in (A.4) reduces to a single minor of F, wherein one row of D is

replaced by a row of N. Thus f divides this minor. (This part of the

argument is very similar to that in Vidyasagar and Viswanadham (1983) and

is therefore only sketched.) Next we choose K to contain two one's and the

'* rest zero. This will show that f divides appropriate minors of F con-

taining two rows of N and the rest from D. Finally, f divides the g.c.d.

of all these minors, which is .

Proof of Theorem 2.3 Clearly g divides f since g is g.c.d. of a larger

set. To prove that f divides g, write

* (P,C) = II + PCI. IDc I. ID.I

= Dc. IDI + E minors of P. IDI. minors of C. IDc I

= IDcj. ID! + E minors of F. minors of [ Dc Nc ] (A.5)

! However, every function in (A.5) is a multiple of f=f; hence *(P,C) is a

multiple of f. Finally, the g.c.d. of all such *(P,C) is a multiple of f,

i.e. f divides g.

Proof of Theorem 2.4 In (Vidyasagar 1985, Theorem (5.3.10)), it is

shown that if C stabilizes P, and C 1 stabilizes P1, then C+C1 stabilizes

P. Now, if C and C 1 are both decentralized, so is C+Cj. This proves that

* C+DS(P1 ) is a subset of DS(P). Next, suppose C is decentralized but
.4
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unstable. Then, from the proof of the above-cited theorem, we know that,

for sufficiently small a, the controller aC does not belong to S(PI) (and

therefore certainly not to DS(PI)), even though (I+c)CcS(P). Since C is

decentralized, so is (1+a)C. Thus, (1+a)C DS(P) but aC DS(Pl), i.e.

C+DS(PI) is a strict subset of DS(P).

Proof of Theorem 2.5 Suppose C is stable and diagonal. Then, letting

Ci denote the ii-th element of C, we get

ID + CNI = I dl + cl n1 ... dm + cm nm I

= IDI + E a minor of c Ux

I= D + a multiple of g.c.d. U. (A.6)a *o

In order for this quantity to be a unit, IDI and g.c.d. va must satisfy the

parity interlacing property.

Proof of Lemma 2.6 see Vidyasagar et al. (1985).

Proof of Theorem 2.8 Let C-(I-RP)-lR. Then C=Y"IX, where Y=I-RP, X=R.

Let the subscript i denote the i-th column of a matrix. Then, by Cramer's

rule,

c12 = 01 c 12 = o if and only if yl A XI = 0 ,Y2 A X2 = 0 • (A.7)

Let ei denote the i-th elementary unit vector, i.e. the i-th column of the

identity matrix. Then yl -el-Rpl, y2he2Rp2" Similarly, x1-r1 , x2=r2.

Thus

- 47 -
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Yl A x I - 0 if and only if (c, - RP1 ) A r1 =0 (A.8)

But Rpl=r I Pul + r2 P21, Hence

Yl A x, =0 if and only if c1 A r1 - (r1 P11 + r2 P21 )A rI  0

if and only if c I A r- P2 1 r 2 Ar = 0 (A.9)

since rI A rl = 0. Now

1 rlj
el A r1 = = r21 , r2 A rI = r1 A r2 = -IRI. (A.10)

0 r2 1

Hence (A.9) becomes

Y2 A x I  - 0 if and only if r2 1 = - P21 IRJ. (A.1I)

Similarly,

Y2 A X2 = 0 if and only if r1 2 = -P12 IRI (A.12)

Proof of Theorem 3.4 As shown in (Vidyasagar 1985, p. ), one can

choose

YX I C I  D -X I -Cl PI Cl

-r J K,:j = : (A.13)
-N - D P1 I- PI Cl N Y PI

as a doubly coprime factorization of P0. Moreover, C+Cl stabilizes PO if

and only if

Cj R I PIR) -, R SW (A.14)

-48--S
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Since C is diagonal, C+C1 is diagonal if and only if C1 is. By Theorem

2.8, C1 is diagonal if and only if R satisfies (3.12). This reads to

(3.13) and (3.14).

To prove (3.16), note that, since (No DO) and(PI, I-CjPj) are both

r.c.f.'s of P0 , there must exist a unimodular U such that (3.15) holds.

Suppose C stabilizes P, i.e. C-C1 stabilizes P1 . Then C-C1 must be of the

form

C-C1 =(I-RP1 ) - R (A.15)

and so C must be of the form

C= (I - RP1 - [ C1 + R (I - P1 C1 I (A.16)

Now an £.c.f. (5c , Rc ) of C such that

Dc Do + Nc No = I (A.17)

is given by

Dc Nc ] u I - RPI  C1 + R ( I - P1 C1 )]

- u ( [ I C1 I + R [ - P1 I - PI C1 ]). (A.18)

- 49 -
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APPENDIX B

Controller Equations for Simultaneous Stabilization

(Section l.(a))

Controller dynamic equations:

dr Xc(t) = (AC)xc(t)+(BC)uc(t)

yc(t) = (CC)xcH) + (EC)uc(t)

Controller input uc: 2x1 vector

output Yc: lx1 scalar

state Xc: 19x1 vector

Controller matrices:

AC: 19x19 matrix

BC: 19x2 matrix

CC: 1x19 vector

EC: 1x2 vector

450
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5.0350D+05 1. 0000D+00 0. 00000+00 2. 5559D+00 -1. 0223D+01 3.8 934D
-2. 7417D+04 0. OOOOD+00 1. 0000D+400 -4. 5883D-02 1. - 353D-0 1 -1. 79550.
-1. 1119D+04 0.00000+00 0.0000D+00 9. 1677D-01 3.3292D-01 -9.45440-
3. 3802D+03 0. 0000D+00 0. 0000Di00 1. 8140D-02 9. 2744D-01 2.68334D
5. 0600D+01 0. 0000D+00 0. 00000+00 2. 1341D-03 -8.-5365D-03 2. 02040

-4. 62040+01 0. 00000+00 0. 00000+00 0. 00000+00 0. 00000+00 -2. 7659D
5.9849D+01 0. 0000D+00 0. OO0OD+O0 2. 1341D-03 -8.-5365D-03 1 0758r.
0. 00000+-00 0. OOOOD+OO 0. 00000D+00 0. 00000+00 0.-0000D+00 0. 0000L'
0. 00000.00 0. 0000D+00 0. 00000+00 0 00000.00 0.-0000D+00 0.0000OD
0. 00000+00 0.0000+00 0. 0COOD+0-0 0. 00000+00 0. 00000400 0.0000D
0. OOOOD+00 0. 0000D+00 0. 000004-00 0 00000.00 0. 00000+00 0. 000010

Columns 13 to 18
5. 4951D+06 -4. 0-C-'Sb0+08 -8. OOOOD+01 2 56000+04 -4.0960D+05 3. 2768B

-5 1622D+05 6 5510D+07 0. 0000D*.00 0.0000D+00 0. OOOODi-00 0 00001IZ

5,7657D+04 -1. 6209D+07 0. 00000.00 0. OOOOD+00 0. OOOOD+00 0. 0000E)
1-17330+03 -I 1215D.405 0 00000.00 0 OOOOD+00 O.Oc' 000 0 00000

-1. 3720D.02 5.1874D+04 0. 00000+00 0. 00000+00 0.0000OD+00 0. 0000E.
-5 9829--O1 8. 6164D4-02 0 00000.00 0 OOOOD--00 0. 00000.00 c'. 0 C), -), I
-9. 0139D-01 3. 03950+02 0. 00000+00 0. 00000400 0. 00000+-00 0. OO~CI-.,
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1 5532D+00 -1. 6653D402 0 000.0 .OODoO 00000400 0 00000O+00D 0 0001. r.

-2. 1345D+00 5. 98490+01 -8. 0000D+00 0. 00000 400 0. 00000 '00 0. 000'
0 00000+00 0. 0000D.00 1 00000.00C) -8. 0000D+00 0. 0000-4 00 0 () 0 IJI.L
0. 00000+00 0. 00000+00 0. OOOOD+00 1. 0000D+00 -6. OOOODi-00 0. 000u ;Z

- 0. 00000+00 0. 0000D400 0 0000D+00 0 00000+00 1. D000D+00 -8 0000Cr

0 00000+00 0. 00000+00 0. 00000+00 0. 00000+00 0. 0000D+00 1. OOQL

Columns 19 to 19
-1.0486D+07

0 00000+00
0 00000+00
0. 00000+00
0 00000+00
0. 00000+00
0. 00000+00
0. 00000+00
0 00000+00
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0 OOOOD.00
0 00000+00
0 OOOODI 00
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4. 6896D+03 4.0235D+05
-3. 5108Do02 -8. 2540D+04
1.0454D+01 2.3600D+04
9 1677D-01 1.2818D+02
1.8140D-02 -7.7673D+01
2 1341D-03 -1. 36641+00
0. 000D+O0 --4. 5069D-01
I 9169D+01 1.b;56rD+04
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Columns 1 to 6
3 5000D+01 -6. 9516D+02 1. 5938D+04 -3. 1472D+05 5.3675D+0b -2 8090Do07

Columns 7 to 12

2.6991D+08 3.8500D+01 -1.0745D+03 1.9195D+04 -6.2458D+05 6.3156D+O
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-6 7300D+07 3.0853D+08 8.0000D+01 -2, 5600D+04 4.0960D*05 -3.2768D+06

Columns 19 to 19
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